Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 197
Filter
1.
Acta Pharmaceutica Sinica ; (12): 1833-1841, 2023.
Article in Chinese | WPRIM | ID: wpr-978656

ABSTRACT

The pathogenesis of the nephrotic syndrome is complex and the pathological types are diverse, so the minor symptoms in its early phases are difficult to detect. Renal biopsy is the gold indicator for the diagnosis of renal pathology and progression, but poor patient compliance shows, and the optimal treatment time is often delayed. Therefore, the discovery of biomarkers for early diagnosis and disease progression monitoring is of great clinical significance. In this study, doxorubicin-injured podocyte models were used to simulate human kidney disease at different stages of progression. LC-MS-based metabolomic technology combined with statistical methods was used to screen and identify the potential biomarkers associated with early injury or progression of podocytes. The results of cell viability, apoptosis tests and podocyte structural protein analysis showed that the model was successfully constructed, and the degree of podocyte injury was significantly different between the two modeling methods. According to VIP > 1 and P < 0.05 based on the orthogonal partial least squares discriminant analysis (OPLS-DA) model, nine differential metabolites reflecting early podocyte injury and twelve differential metabolites reflecting the injury progression were screened, respectively. ROC analysis was adopted to focus on the potential biomarkers that can reflecting the early podocyte injury including L-tryptophan, guanosine triphosphate (GTP), 5′-thymidylic acid (dTMP) and thymidine, and the biomarkers reflecting the injury progression of podocytes composed of L-phenylalanine, L-tyrosine acid, uridine 5′-diphosphate (UDP) and guanosine 5′-diphosphate (GDP) AUC > 0.85. It indicated that these eight metabolites may have high sensitivity and diagnostic ability. This study provides a reference for the research on biomarkers of progressive diseases.

2.
Journal of Pharmaceutical Practice ; (6): 358-365, 2023.
Article in Chinese | WPRIM | ID: wpr-976527

ABSTRACT

Objective To establish a method and study the pharmacokinetics for concentration determination of effective components in Xiakucao Xiaoliu mixture in Normal Rat Plasma By LC-MS/MS. Methods The mobile phase was methanol-water (0.1% formic acid) system under the positive ion mode of C18 chromatographic column, gradient elution was adopted, and the flow rate was 0.3 ml/min. In the negative ion mode, the mobile phase was acetonitrile-water (0.1% formic acid) system, gradient elution, with a flow rate of 0.4 ml/min. Caffeic acid, rosmarinic acid, syringic acid, rutin in positive ion mode and Atractylodes lactone II and Atractylodes lactone III in negative ion mode were respectively determined. Normal rats were intragastrically given Xiakucao Xiaoliu Mixture 7.8 ml/kg, and blood was taken from the orbit at different time points after the administration. The blood concentration was determined by the validated LC-MS/MS method and the non-standard DAS2.0 software was used. The pharmacokinetic parameters of rats after administration were calculated by the compartment model. Results The pharmacokinetic parameters belonged to non atrioventricular model. The pharmacokinetic characteristics of the four main anti-cancer active ingredients of Caffeic acid, Rosmarinic acid, Syringic acid and Atractylodes Ⅲ in rats after administration of Xiakucao Xiaoliu Mixture were significantly different from those reported in the literature after the administration of monomers. Conclusion The established method was simple, accurate and sensitive, which could be suitable for the content determination of effective components in Xiakucao Xiaoliu mixture in Normal Rat Plasma, which would be a valuable information for the study on main anticancer active substances.

3.
Journal of China Pharmaceutical University ; (6): 474-482, 2023.
Article in Chinese | WPRIM | ID: wpr-987668

ABSTRACT

@#Two Hofmann-Martius-like rearrangement products generated in the production of duloxetine hydrochloride were studied. The structures and generation mechanism of the two Hofmann-Martius rearrangement products were analyzed by LC-MS and NMR. The results showed that under the acidic conditions, the naphthol ether bond of duloxetine would break down and the intermediates of naphthol and the alkyl thiophene cation was generated; the two Hofmann-Martius-like rearrangement products were proven to be a pair of isomers produced by nucleophilic substitution between the naphthol intermediate state and the alkyl thiophene cation intermediate state at the ortho or the para position, respectively. The production of two isomers was related to the strong acidic and protic solvent environment. Therefore, in the salting process of duloxetine hydrochloride, the pH value should be controlled in the range of 3-7 and temperature should be maintained below 50 °C, as well as the nonprotic solvent acetone is chosen to avoid generation of the two isomers.

4.
China Journal of Chinese Materia Medica ; (24): 2480-2489, 2023.
Article in Chinese | WPRIM | ID: wpr-981324

ABSTRACT

Qualitative and quantitative analysis of 2-(2-phenylethyl) chromones in sodium chloride(NaCl)-treated suspension cells of Aquilaria sinensis was conducted by UPLC-Q-Exactive-MS and UPLC-QQQ-MS/MS. Both analyses were performed on a Waters T3 column(2.1 mm×50 mm, 1.8 μm) with 0.1% formic acid aqueous solution(A)-acetonitrile(B) as mobile phases at gradient elution. MS data were collected by electrospray ionization in positive ion mode. Forty-seven phenylethylchromones was identified from NaCl-treated suspension cell samples of A. sinensis using UPLC-Q-Exactive-MS, including 22 flindersia-type 2-(2-phenylethyl) chromones and their glycosides, 10 5,6,7,8-tetrahydro-2-(2-phenylethyl) chromones and 15 mono-epoxy or diepoxy-5,6,7,8-tetrahydro-2-(2-phenylethyl) chromones. Additionally, 25 phenylethylchromones were quantitated by UPLC-QQQ-MS/MS. Overall, the rapid and efficient qualitative and quantitative analysis of phenylethylchromones in NaCl-treated suspension cells of A. sinensis by two LC-MS techniques, provides an important reference for the yield of phenylethylchromones in Aquilariae Lignum Resinatum using in vitro culture and other biotechnologies.


Subject(s)
Chromones , Sodium Chloride , Chromatography, Liquid , Flavonoids , Tandem Mass Spectrometry , Thymelaeaceae
5.
Braz. J. Pharm. Sci. (Online) ; 59: e20314, 2023. tab, graf
Article in English | LILACS | ID: biblio-1447570

ABSTRACT

Abstract Betamethasone (BET) is a synthetic glucocorticoid recommended for pregnant women at imminent risk of preterm birth before 34 weeks to reduce neonatal complications. There are different techniques to describe BET plasma quantification. However, none quantified the plasmatic concentration of BET in dichorionic (DC) twin pregnancies using LC-MS. Our objectives were to develop and validate a method for quantifying BET by LC-MS for pharmacokinetic (PK) and placental transfer studies in DC twin pregnancies. Blood samples were collected after intramuscular administration of a single BET dose containing 6 mg disodium phosphate + 6 mg acetate. BET was determined in plasma by liquid-liquid extraction. The method showed linearity in the range of 2-250 ng/mL, as well as precision and accuracy with a coefficient of variation and relative standard errors ≤ 15%. Additionally, the method presented selectivity and did not present matrix or carry-over effect. Stability tests also presented coefficient of variation and relative standard errors ≤ 15%. This is the first study which describe maternal and fetal plasma concentrations of BET in a DC twin pregnancy. The BET PK parameters were AUC0-∞, CL/F, Vd/F, Cmax, Tmax of 292.20 h*ng/mL, 39.08 L/h, 278.72 L, 25.55 ng/mL and 0.58 h, respectively. The placental transfer ratios of umbilical vein/maternal vein and intervillous space/maternal vein were 0.14 and 0.19 and 0.40 and 0.27 for both twins, respectively. However, a clinical study with more subjects is imperative to confirm this higher concentration of BET in the intervillous space


Subject(s)
Chromatography, High Pressure Liquid/methods , Plasma/metabolism , Betamethasone/antagonists & inhibitors , Liquid-Liquid Extraction/instrumentation
6.
Rev. invest. clín ; 74(6): 314-327, Nov.-Dec. 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1431820

ABSTRACT

ABSTRACT Background: The coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus and is responsible for nearly 6 million deaths worldwide in the past 2 years. Machine learning (ML) models could help physicians in identifying high-risk individuals. Objectives: To study the use of ML models for COVID-19 prediction outcomes using clinical data and a combination of clinical and metabolic data, measured in a metabolomics facility from a public university. Methods: A total of 154 patients were included in the study. "Basic profile" was considered with clinical and demographic variables (33 variables), whereas in the "extended profile," metabolomic and immunological variables were also considered (156 characteristics). A selection of features was carried out for each of the profiles with a genetic algorithm (GA) and random forest models were trained and tested to predict each of the stages of COVID-19. Results: The model based on extended profile was more useful in early stages of the disease. Models based on clinical data were preferred for predicting severe and critical illness and death. ML detected trimethylamine N-oxide, lipid mediators, and neutrophil/lymphocyte ratio as important variables. Conclusion: ML and GAs provided adequate models to predict COVID-19 outcomes in patients with different severity grades.

7.
Article | IMSEAR | ID: sea-226316

ABSTRACT

Kanjika is a traditional Ayurvedic fermentation product prepares using 11 herbal ingredients in an aqueous media without the addition of any sweetening agents. The aim of the study was to analyse the biochemical changes happening throughout the process of fermentation in Kanjika and to identify the bioactive molecules formed during the fermentation process. Two batches of Kanjika were prepared. One batch was kept undisturbed throughout the fermentation process, while samples were drawn out at regular intervals from the other batch. A comparative evaluation of physicochemical parameters was done between the various samples drawn from the second batch of the formulation and the sample from the first batch after completion of fermentation. Further detailed analysis of the product before initiation of fermentation and after completion of fermentation was done using LC-MS. The two batches of Kanjika showed significant changes with regard to basic physicochemical parameters. It was found that in both the batches the pH was found to be highly acidic without any significant variations among the samples. Brix value was significantly high at the end of fermentation, in the sample from the undisturbed batch when compared to the sample from the disturbed batch.

8.
Journal of Pharmaceutical Analysis ; (6): 481-488, 2022.
Article in Chinese | WPRIM | ID: wpr-955461

ABSTRACT

Penicillins are one type of the most important antibiotics used in the clinic.Control of drug impurity profiles is an important part of ensuring drug safety.This is particularly important in penicillins where polymerization can lead to polymers as elicitors of passive cutaneous anaphylaxis.The current under-standing of penicillin polymerization is based on reactions with amino groups,but no comprehensive mechanistic understanding has been reported.Here,we used theoretical calculations and column switching-LC/MS techniques to study penicillin dimerization.Ampicillin and benzylpenicillin were selected as representative penicillins with or without amino groups in the side chain,respectively.We identified four pathways by which this may occur and the energy barrier graphs of each reaction process were given.For benzylpenicillin without an amino group in the 6-side chain,dimerization mode A is the dominant mode,where the 2-carboxyl group of one molecule reacts with the β-lactam of another molecule.However,ampicillin with an amino group in the 6-side chain favors dimerization mode C,where the amino group of one molecule attacks the β-lactam of another molecule.These findings can lead to a polymer control approach to maintaining penicillin antibiotics in an active formulation.

9.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 163-170, 2022.
Article in Chinese | WPRIM | ID: wpr-943097

ABSTRACT

ObjectiveTo study the changes of primary metabolites and phenols in the fruits of Acanthopanax senticosus at different development stages, so as to provide a theoretical basis for the rational utilization of A. senticosus fruit resources. MethodThe primary metabolites and phenols in the fruits at different development stages were determined via gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) and then compared by multivariate statistical analysis. ResultA total of 274 chromatographic peaks were obtained by GC-MS-based non-targeted metabonomics and 24 differential metabolites were screened out by multivariate statistical analysis. The differential metabolites were mainly concentrated in pentose phosphate pathway, galactose metabolism, ascorbic acid and aldose metabolism pathways. After color conversion, the pentose phosphate pathway and galactose metabolism were activated and increasing sugars were accumulated. The ascorbic acid and aldose metabolism pathways were active before color conversion, with high accumulation of the end product ascorbic acid. The ultra-high liquid chromatography-mass spectrometry (UPLC-MS) identified 28 phenols in the fruits at different development stages. Flavonoids were accumulated mainly at the green ripening stage before color conversion, and phenolic acids were accumulated mainly after color conversion. ConclusionThe accumulation of primary metabolites and phenols in A. senticosus fruits varies significantly among different development stages

10.
Chinese Journal of Biotechnology ; (12): 374-385, 2022.
Article in Chinese | WPRIM | ID: wpr-927717

ABSTRACT

Phenylalaninammo-nialyase (PAL) is a key enzyme in the synthesis of methyl benzoate - a plant aroma compound. In order to understand the function of this enzyme in the formation of fragrance in the scented Rhododendron species-Rhododendron fortunei, we cloned a gene encoding this enzyme and subsequently examined the gene expression patterns and the profile of enzyme activity during development in various tissues. The full length of RhPAL gene was cloned by reverse transcription-PCR (RT-PCR) and rapid amplification of cDNA ends (RACE) techniques. The expression levels of RhPAL gene were measured by real-time quantitative reverse transcription PCR (qRT-PCR) and the amount of phenylalanine and cinnamic acid were assayed with LC-MS. The results showed that the ORF sequence of RhPAL gene amplified from the cDNA templates of flower buds had 2 145 bp, encoding 715 amino acids, and shared 90% homology to the PAL amino acid sequences from other species. qRT-PCR analysis showed that the expression of RhPAL in petals during flowering kept in rising even until the flowers wilted. The expression of RhPAL in pistil was much higher than that in stamen, while the expression in the younger leaves was higher than in old leaves. However, the expression level was relatively lower in petal and stamen compared to that in leaves. We also measured the PAL activity by Enzyme-linked immuno sorbent assay in the petals of flowers at different flowering stages. The results showed that PAL activity reached the highest at the bud stage and then decreased gradually to the lowest when the flowers wilted, which followed a similar trend in the emission of the flower fragrance. The phenylalanine and cinnamic acid contents measured by LC-MS were highly correlated to the expression level of RhPAL in various tissues and at different flowering stages, implying that RhPAL plays an important role in the formation of the flower fragrance. This work may facilitate the breeding and improvement of new fragrant Rhododendron cultivars.


Subject(s)
Amino Acid Sequence , Cloning, Molecular , DNA, Complementary , Flowers/genetics , Rhododendron/genetics
11.
China Journal of Chinese Materia Medica ; (24): 2056-2063, 2022.
Article in Chinese | WPRIM | ID: wpr-928145

ABSTRACT

A chronic cholestasis model was induced in mice by feeding a diet containing 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine(DDC). The effects of Ershiwuwei Songshi Pills(ESP) on endogenous metabolites in mice with chronic cholestasis were investigated by metabolomics analysis based on liquid chromatography-mass spectrometry(LC-MS). The results showed that ESP was effective in improving pathological injury and reducing serum levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), alkaline phosphatase(ALP), and total bile acid in the model mice. Meanwhile, 13 common differential metabolites were revealed in metabolomic screening between the model/control group and the model/ESP group, including uric acid, glycolaldehyde, kynurenine, flavin adenine dinucleotide, L-3-phenyllactic acid, I-urobilin, leukotriene D4(LTD4), taurocholic acid, trioxilin A3, D-inositol-1,4-diphosphate, PC [16:0/20:2(11Z,14Z)], PC[14:0/22:2(13Z,16Z)], and PC[20:4(5Z,8Z,11Z,14Z)/20:4(5Z,8Z,11Z,14Z)]. After ESP intervention, the levels of all 13 differential metabolites were significantly retraced, and pathway analysis showed that ESP achieved its therapeutic effect mainly by affecting arachidonic acid metabolism, glycerophospholipid metabolism, tryptophan metabolism, and primary bile acid biosynthesis. This study elucidated the mechanism of action of ESP against chronic cholestasis based on metabolites.


Subject(s)
Animals , Mice , Bile Acids and Salts , Cholestasis/drug therapy , Chromatography, Liquid , Medicine, Tibetan Traditional , Metabolomics
12.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 137-146, 2021.
Article in Chinese | WPRIM | ID: wpr-906466

ABSTRACT

Objective:To establish a high performance liquid chromatography (HPLC) fingerprint of branches of <italic>Juglans mandshurica</italic> and to evaluate the quality of the samples from different producing areas and in different harvest periods. Method:Chromatographic separation was performed on an Agilent Poroshell 120 SB-C<sub>18</sub> column (2.1 mm×100 mm, 2.7 μm) for gradient elution with mobile phase of 0.2% formic acid solution (A)-0.2% formic acid acetonitrile solution (B) (0-5 min, 5%-10%B; 5-25 min, 10%-16%B; 25-40 min, 16%-22%B; 40-45 min, 22%-45%B; 45-50 min, 45%-65%B; 50-52 min, 65%-100%B; 52-55 min, 100%B) at a flow rate of 0.3 mL·min<sup>-1</sup>. The column temperature was 30 ℃ and the detection wavelength was 270 nm. The quality of branches of <italic>Juylans mandshurica</italic> was evaluated by similarity evaluation, cluster analysis, principal component analysis and partial least squares-discriminant analysis. The chemical constituents of the samples were identified by HPLC coupled with quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS/MS). The mass spectrometry was conducted in negative ion mode with electrospray ionization(ESI). Data were acquired over a range of <italic>m</italic>/<italic>z</italic> 100-1 700 for MS and <italic>m</italic>/<italic>z</italic> 50-1 700 for MS/MS. Result:A total of 19 common peaks were confirmed in 40 batches of samples, and the similarity ranged from 0.430 to 0.995, of which the similarity of samples collected in spring and winter seasons (April, May and December) was greater than 0.90, while the similarity of most samples collected in summer (July to September) was low. Multivariate statistical analysis showed that the samples were divided into two groups according to the harvest time, but there was no obvious classification rule for the samples from different producing areas. The contents of most constituents in the samples collected in spring and winter were higher than those collected in summer. The result illustrated that different harvest periods had great influence on the quality of branches of <italic>J</italic>.<italic> mandshurica</italic>. Compared with the samples collected in summer, the quality of samples collected in spring and winter was better. A total of 22 peaks were proved to be the main constituents that contributed to the difference between samples collected in different seasons. A total of 83 chemical components were identified by HPLC-Q-TOF-MS/MS, including 49 tannins, 7 organic acids, 14 naphthalene derivatives, 1 flavonoid, 6 anthracene derivatives, 2 lignans, 3 diarylheptanoids and 1 saccharide. Totally 13 common peaks were identified. Of the peaks that contributed to discriminate samples collected in different season, 19 peaks were identified and most of them were tannins. Conclusion:The established HPLC fingerprint can provide useful information for the quality evaluation of branches of <italic>J</italic>.<italic> mandshurica</italic>. Tannin is the main constituents in the samples. Harvest period has great influence on the quality of branches of <italic>J</italic>.<italic> mandshurica</italic>.

13.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 127-136, 2021.
Article in Chinese | WPRIM | ID: wpr-906309

ABSTRACT

Objective:To compare the adsorption and desorption properties of different anion exchange resins for total ginsenosides, clarify their adsorption/desorption mechanism, and establish a simple protocol for the purification of total ginsenosides. Method:The adsorption and desorption properties of five different resins (D301, D315, D312, D330, D201) on total ginsenosides were evaluated with specific adsorption capacity, specific desorption capacity, desorption rate and recovery rate as indices. The adsorption kinetics and thermodynamics of the selected resin and D101 macroporous resin were investigated by pseudo-first-order and pseudo-second-order kinetic models, as well as Langmuir and Freundlich isothermal adsorption models, and the differences of adsorption mechanism between anion exchange resin and conventional macroporous resin were elucidated. The dynamic adsorption and desorption experiments were used to determine the optimum chromatographic parameters for anion exchange resin. After verifying the purification process of total ginsenosides, nine individual ginsenosides were qualitatively and quantitatively analyzed by liquid chromatography-mass spectrometry (LC-MS). Result:D301 anion exchange resin was obviously superior to the other four kinds of anion exchange resin, the optimum parameters were set as follows:pH 8 of loading solution, loading volume of 2 BV, loading speed of 4 BV·h<sup>-1</sup>, eluted with 3 BV of water and 20% ethanol for the impurities, eluted with 8 BV of 80% ethanol with elution speed of 4 BV·h<sup>-1</sup>. After purified by D301 resin, the enrichment coefficients of 9 monomer ginsenosides were simultaneously increased to different degrees, the overall enrichment coefficient was up to 5.3, the recovery rate for the total amount of these ginsenosides was calculated to be 80.9%, and the purity of total ginsenosides in Ginseng Radix et Rhizoma extract increased from 17.07% to 91.19%. Conclusion:D301 anion exchange resin is suitable for rapid and practical purification of total ginsenosides, hence allowing for the enrichment of high-purity total ginsenosides from Ginseng Radix et Rhizoma via one-dimensional column chromatography.

14.
Journal of China Pharmaceutical University ; (6): 555-565, 2021.
Article in Chinese | WPRIM | ID: wpr-904328

ABSTRACT

@#This study aimed to identify the related substances of lorazepam tablets by liquid chromatography mass spectrometry (LC-MS). To separate the related substances of lorazepam tablets, gradient elution was performed using acetonitrile and 0.1% acetic acid -20 mmol/L of ammonium acetate as mobile phase on Inert Sustain C18 (250 mm × 4.6 mm, 5 μm).The accurate mass and elemental composition of the parent ions and their product ions of related substances were determined by electrospray-ionization quadrupole time-of-flight high resolution mass spectrometry (ESI-Q-TOF/MS).The structures of the related substances were identified by spectral analysis. Under the established analytical condition, lorazepam and its related substances were adequately separated, and 22 major related substances with content greater than 0.1% were detected and identified by hyphenated techniques in lorazepam tablets and their stressed samples.Among them, 5 were the impurities listed in the USP or EP, and the others were unknown related substances identified for the first time in this paper.The LC-MS technique can effectively separate and identify the related substances of lorazepam tablets, which provides some reference for quality control.

15.
Journal of Forensic Medicine ; (6): 248-255, 2021.
Article in English | WPRIM | ID: wpr-985216

ABSTRACT

Herbicides are a kind of chemical or biological agents that can effectively destroy or inhibit weed growth. Because of the widespread and frequent use of herbicides, herbicide poisonings have often been reported. At present, the main species reported to have caused poisoning are paraquat, diquat, glyphosate, and glufosinate. The main instrumental analysis method is LC-MS. This paper reviews the research progress on analysis methods of common herbicides in biological material and their application, summarizes the sample pretreatment and instrumental analysis situation of qualitative and quantitative analysis of herbicides in biological material, and collects test data of actual poisoning cases, to provide reference for clinical diagnosis and treatment and forensic identification of herbicide poisoning.


Subject(s)
Chromatography, Liquid , Herbicides , Mass Spectrometry , Paraquat
16.
Acta Pharmaceutica Sinica ; (12): 1127-1136, 2021.
Article in Chinese | WPRIM | ID: wpr-886995

ABSTRACT

Metabolomics based on liquid chromatography coupled with mass spectrometry (LC-MS) was used to study the initiation and development of diabetes in rats, and the ability of Ginkgo biloba extract (GBE) to ameliorate this pathology. Diabetes mellitus (DM) was induced by intra-peritoneal injection of streptozotocin. The rats were randomly divided into a normal control group treated with drug-free solution (NC), a normal control group treated with GBE (N-GBE), a DM group treated with drug-free solution (DM), and a DM group treated with GBE (D-GBE); rats were maintained on this protocol for 9 weeks. Rat plasma was collected from the sixth week to the ninth week and then analyzed with LC-MS. Animal experimentation was approved by the Committee on the Ethics of Animal Experiments of Xuzhou Medical University. Twelve plasma metabolites with continuous differentiation were monitored to indicate dysfunction of metabolic pathways including fatty acid metabolism, phospholipid metabolism, amino acid metabolism, tricarboxylic acid cycle activity, bile acid metabolism, and purine metabolism to confirm the occurrence and development of DM. Treatment with GBE partially reversed the changes seen in five metabolites in DM rats, indicating that GBE could prevent the occurrence and development of DM by acting on fatty acid metabolism, phospholipid metabolism, amino acid metabolism, and the tricarboxylic acid cycle.

17.
Journal of Pharmaceutical Practice ; (6): 403-408, 2021.
Article in Chinese | WPRIM | ID: wpr-886873

ABSTRACT

Objective To evaluate therapeutic effects of dihydrotanshinone Ⅰ on hepatic fibrosis based on liver metabolomics method. Methods 28 rats were randomly divided into four groups including control group, hepatic fibrosis model group and dihydrotanshinone Ⅰ low dose group and dihydrotanshinone Ⅰ high dose group. The dihydrotanshinone Ⅰ treated groups received dihydrotanshinone Ⅰ for 28 days. The rat liver samples were collected and analyzed by liquid chromatography-mass spectrometer (LC-MS). The OPLS-DA pattern recognition analysis of metabolomics differences among the groups and therapeutic effects of dihydrotanshinone Ⅰ on hepatic fibrosis were evaluated. Results 38 metabolites were identified through liver metabolomics analysis. The possible mechanism of hepatic fibrosis was mainly involved glutathione metabolism, melatonin metabolism, amino acid metabolism, lipid metabolism and TCA cycle. The hepatic fibrosis induced by TAA was reversed by dihydrotanshinone Ⅰ. Conclusion Dihydrotanshinone Ⅰ provided satisfactory therapeutical effects on hepatic fibrosis through partially regulating the perturbed glutathione metabolism, melatonin metabolism, amino acid metabolism, lipid metabolism, TCA cycle.

18.
China Journal of Chinese Materia Medica ; (24): 951-965, 2021.
Article in Chinese | WPRIM | ID: wpr-878961

ABSTRACT

The Qinling-Daba Mountains area is the main producing areas of Gynostemma longipes for medicinal usage, and samples of wild whole plants in Pingli, Shaanxi Province and Qingchuan, Sichuan Province were collected. The ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UHPLC-Q-TOF-MS~E) was used to profile the chemical compositions and analyze the similarities and differences of G. longipes samples in these areas. Based on the accurate molecular weight and fragment information obtained from Q-TOF-MS~E, the structures of the main components were identified by combining with the mass spectra, chromatographic behaviors of reference standards and related literatures. The results showed that the components of wild G. longipes from different places among Qinling-Daba Mountains area were similar. Forty-five chemical components were identified in the whole plant of G. longipes from Pingli, Shaanxi Province, including 43 triterpenoid saponins and 2 flavonoids which contain all main peaks in its fingerprint. The main components are dammarane-type triterpenoid saponins, such asgypenoside ⅩLⅨ, gypenoside A and its malonylated product of glycosyl.


Subject(s)
Chromatography, High Pressure Liquid , Drugs, Chinese Herbal , Gynostemma , Mass Spectrometry , Saponins
19.
China Journal of Chinese Materia Medica ; (24): 130-138, 2021.
Article in Chinese | WPRIM | ID: wpr-878921

ABSTRACT

As a precious traditional Chinese medicine(TCM), snake bile has been widely used in numerous Chinese medicine prescriptions. Bile acid(BA) derivatives have been demonstrated as the primary chemical family in snake bile. In-depth chemical characterization of BAs is of great importance towards the establishment of quality standards and clarification of the effective material basis for snake bile. This study firstly employed ~1H-NMR to preliminarily analyze the chemical profiles of snake bile, an automated fraction collector was subsequently implemented to obtain the fractions-of-interest. The fraction was then concentrated and re-analyzed by LC-MS. Based on ~1H-NMR, BAs were found to be the main components of snake bile, and six BAs including CDCA, CA, TCDCA, TCA, TDCA and GCA were tentatively identified from the representative spectrum with the assistance of literature and reference compounds. Whereas the content of TCA in snake bile was too great, resulting in a great obstacle for the detection of trace components, the automated fraction collector was subsequently implemented to obtain the fractions-of-interest for LC-MS analysis. According to matching MS/MS information and retention time with reference compounds as well as database retrieval, a total of 57 BAs were detected and annotated. Because of the combination of ~1H-NMR and LC-MS platforms, the findings are beneficial for the in-depth characterization of BAs in snake bile, which provides references for the establishment of quality control and evaluation methods of snake bile.


Subject(s)
Animals , Bile , Bile Acids and Salts , Chromatography, Liquid , Snakes , Tandem Mass Spectrometry
20.
Journal of China Pharmaceutical University ; (6): 31-37, 2021.
Article in Chinese | WPRIM | ID: wpr-873576

ABSTRACT

@#The changes of metabolic profile are closely related to external stimulus, and the concentration of the metabolite can directly reflect the physiological or pathological states of organisms. Therefore, the quantitative detection of metabolites is necessary. However, traditional targeted metabolomic methods have such drawbacks as narrow coverage and low sensitivity. In recent years, derivatization techniques have developed rapidly in the field of metabolomics. Derivatization reagents for amine, hydroxyl, carboxyl, carbonyl, hydrosulphonyl and other groups have been used in metabolomics research. This paper introduces various derivatization reactions and their applications according to group classification and reviewes the characteristics of multi-group derivatization techniques, with a propect of their research directions and challenges.

SELECTION OF CITATIONS
SEARCH DETAIL